Abstract
Five new phenylpropanoids, named balajaponins A–E (1–5), were isolated from Balanophora japonica, along with 24 known compounds. Among them, three hydrolysable tannins (6–8) showed specific in vitro α-glucosidase inhibition, with IC50 values in the range of 1–4 µM. Kinetic analysis revealed that they all acted in a
noncompetitive mode.
Key words
Balanophora japonica
- Balanophoraceae - phenylpropanoids - hydrolysable tannins -
α‐glucosidase inhibitors
References
- 1 Zhonghua Bencao Editorial Committee of the State Administration of Traditional Chinese
Medicine .Zhonghua Bencao, Vol. 2. Shanghai; Scientific and Technical Publishers 1999:
1265
- 2
Wang K J, Zhang Y J, Yang C R.
New phenolic constituents from Balanophora polyandra with radical-scavenging activity.
Chem Biodivers.
2006;
3
1317-1324
- 3
Jiang Z H, Tanaka T, Iwata H, Sakamoto S, Hirose Y, Kouno I.
Ellagitannins and lignan glycosides from Balanophora japonica (Balanophoraceae).
Chem Pharm Bull.
2005;
53
339-341
- 4
Hosokawa A, Sumino M, Nakamura T, Yano S, Sekine T, Ruangrungsi N, Watanabe K, Ikegami F.
A new lignan from Balanophora abbreviata and inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase
(iNOS) expression.
Chem Pharm Bull.
2004;
52
1265-1267
- 5
Jiang Z, Wen X, Tanaka T, Wu S, Liu Z, Iwata H, Hirose, Wu S, Kouno I.
Cytotoxic hydrolyzable tannins from Balanophora japonica.
J Nat Prod.
2008;
71
719-723
- 6
Jiang Z H, Hirose Y, Iwata H, Sakamoto S, Tanaka T, Kouno I.
Caffeoyl, coumaroyl, galloyl, and hexahydroxydiphenoyl glucoses from Balanophora japonica.
Chem Pharm Bull.
2001;
49
887-892
- 7
Gallagher B D, Taft B R, Lipshutz B H.
Asymmetric conjugate reductions of coumarins. A new route to tolterodine and related
coumarin derivatives.
Org Lett.
2009;
11
5374-5377
- 8
Zhang Z, Ma Y, Zhao Y F.
Microwave-assisted one-pot synthesis of dihydrocoumarins from phenols and cinnamoyl
chloride.
Synlett.
2008;
7
1091-1095
- 9
Haruna M, Koube T, Ito K, Murata H.
Balanophonin, a new neo-lignan from Balanophora japonica Makino.
Chem Pharm Bull.
1982;
30
1525-1527
- 10
Ludwig C H, Nist B J, McCarthy J L.
Lignin XII. The high resolution nuclear magnetic resonance spectroscopy of protons
in compounds related to lignin.
J Am Chem Soc.
1964;
86
1186-1196
- 11
Zhu Y, Lü Z P, Xue C B, Wu W S.
New triterpenoid saponins and neolignans from Morina kokonorica.
Helv Chim Acta.
2009;
92
536-545
- 12
Harada N, Nakanishi K.
A method for determining the chiralities of optically active glycols.
J Am Chem Soc.
1969;
91
3989-3991
- 13
Dillon J, Nakanishi K.
Absolute configurational studies of vicinal glycols and amino alcohols. II. With Pr(dpm)3.
J Am Chem Soc.
1969;
97
5417-5422
- 14
Jiang Z H, Hirose Y, Iwata H, Sakamoto S, Tanaka T, Kouno I.
Caffeoyl, coumaroyl, galloyl, and hexahydroxydiphenoyl glucoses from Balanophora japonica.
Chem Pharm Bull.
2001;
49
887-892
- 15
Bassey S A, Acharavadee P, Okon D E, Udofot J E, Chulabhorn M, Prasat K.
α-Glucosidase inhibitory, aromatase inhibitory, and antiplasmodial activities of a
biflavonoid GB1 from Garcinia kola stem bark.
Planta Med.
2010;
76
276-277
- 16
Boonmee A, Reynolds C D, Sangvanich P.
α-Glucosidase inhibitor proteins from Sesbania grandiflora flowers.
Planta Med.
2007;
73
1197-1201
- 17
Lineweaver H, Burk D.
The determination of enzyme dissociation constants.
J Am Chem Soc.
1934;
56
658-666
- 18
Mathews S T, Kim T, Zhang A J, Fish W J, Rimando A M, Mentreddy S R.
Anti-diabetic properties of serviceberry (Amelanchier alnifolia).
Planta Med.
2008;
74
70
- 19
Deacon C F, Hughes T E, Holst J J.
Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like
peptide 1 in the anesthetized pig.
Diabetes.
1998;
47
764-769
Prof. Li-jiang Xuan
State Key Laboratory of Drug Research
Shanghai Institute of Materia Medica
Chinese Academy of Sciences
555 Zuchongzhi Road
Zhangjiang Hi-Tech Park
Shanghai 201203
People's Republic of China
Telefon: +86 21 20 23 10 00 23 11
Fax: +86 21 50 80 70 88
eMail: ljxuan@mail.shcnc.ac.cn